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ABSTRACT 
Recent work has applied machine learning methods to auto-
matically fnd and/or assess pedestrian infrastructure in online 
map imagery (e.g., satellite photos, streetscape panoramas). 
While promising, these methods have been limited by two in-
terrelated issues: small training sets and the choice of machine 
learning model. In this paper, aided by the recently released 
Project Sidewalk dataset of 300,000+ image-based sidewalk 
accessibility labels, we present the frst examination of deep 
learning to automatically assess sidewalks in Google Street 
View (GSV) panoramas. Specifcally, we investigate two ap-
plication areas: automatically validating crowdsourced labels 
and automatically labeling sidewalk accessibility issues. For 
both tasks, we introduce and use a residual neural network 
(ResNet) modifed to support both image and non-image (con-
textual) features (e.g., geography). We present an analysis of 
performance, the effect of our non-image features and training 
set size, and cross-city generalizability. Our results signif-
icantly improve on prior automated methods and, in some 
cases, meet or exceed human labeling performance. 
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INTRODUCTION 
Sidewalks should beneft all of us. They provide a safe, 
environmentally-friendly conduit for moving about a city. For 
people with disabilities, sidewalks can have a signifcant im-
pact on independence [47], quality of life [38], and overall 
physical activity [17]. While mapping tools like Google and 
Apple Maps have begun offering pedestrian-focused features, 
they do not incorporate sidewalk routes or information on side-
walk accessibility [23], which limits their utility and dispro-
portionately affects people with disabilities. A key challenge 
is data: Where does it come from? How is it collected? 

Traditionally, sidewalk audits—which gather data on the pres-
ence and quality of sidewalks—are performed via in-person 
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inspections by city transit departments or community volun-
teers. However, these audits are expensive, labor intensive, 
and infrequent. 1 Moreover, the resulting data is in disparate 
formats, is not typically open (i.e., published online), and is 
not intended for end-user tools [23, 50]. To expand who can 
collect sidewalk data and to improve data granularity and fresh-
ness, researchers have introduced smartphone-based tools [15, 
46, 52] as well as instrumented wheelchairs [35, 39, 51, 57], 
both of which capture sidewalk information in situ as it’s ex-
perienced. However, these tools have been limited by low 
adoption, small geographic coverage, and high user burden 
(e.g., requiring users to take out their phones, load an app, take 
a picture, annotate it, and upload it) [20, 23]. 

To partially address these scalability issues, researchers have 
begun developing automated methods for sidewalk assessment 
using machine learning and online imagery (e.g., satellite 
photos [10, 8], panoramic streetscape imagery [31, 32, 59]). 
While still early, these complementary approaches promise to 
dramatically decrease manual labor and cost. However, they 
have been limited by two interrelated issues: small training 
sets and the choice in machine learning model—both of which 
negatively impact performance. In this paper, we attempt to 
address both of these issues. 

We present the frst examination of deep learning methods to 
automatically assess sidewalk accessibility in terms of curb 
ramps, missing curb ramps, surface problems, and sidewalk 
obstructions from widely available streetscape imagery. Our 
work is enabled by the recently released Project Sidewalk open 
dataset, which contains a corpus of 300,000+ image-based 
sidewalk accessibility labels collected via remote crowdsourc-
ing in Google Street View (GSV) [55] (Figure 1). Specifcally, 
we investigate two application tasks using GSV panoramas: 
automatically validating crowdsourced labels and automati-
cally labeling sidewalk accessibility issues. 

Our research questions include: 

• R1: How well does our machine learning approach perform
across our two tasks (validation and labeling)?

• R2: What is the impact of additional, non-image related
training features on performance?

• R3: How does classifcation accuracy change as a function
of training data amount?

• R4: How well does our model generalize across cities?

To address these questions, we trained two sets of deep con-
volutional neural networks using ResNet-18 [33]—one set for 
1As one example, the Seattle Department of Transportation completed their frst ever 
sidewalk assessment in 2016, which took 14 interns nearly a year to complete. [1] 
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Figure 1: Examples of the four label types used to train and test our deep learning models for semi-automatic sidewalk assessment: curb ramps, missing curb 
ramps, obstructions, and surface problems. Figure adapted from Project Sidewalk [55]. 

each task. We experimented with three input feature types: 
image features cropped from a GSV panorama, positional 
features encoding the position of items within a panorama, 
and geographic features encoding the position of a panorama 
within a city’s street network (addressing R2). 

While direct comparisons with prior work are challenging, 
our results show labeling performance that meets or exceeds 
human crowdworkers [30] (R1). To complement our quan-
titative fndings, we also qualitatively examine our results, 
identifying common sources of error, such as imagery limita-
tions (shadows or poor resolution) and contextual limitations 
(e.g., predicting missing curb ramps requires inferences about 
where pedestrians are intended to cross streets). 

Our work contributes to a larger, overarching research agenda 
aimed at developing fast and accurate semi-automatic sidewalk 
assessment tools to help transform how city governments and 
citizens alike track, perceive, and use pedestrian infrastructure. 
We envision four specifc use cases: frst, to gather the data 
necessary to create accessibility-aware mapping tools [23, 28]; 
second, to help increase transparency about urban accessibility 
and, relatedly, to hold policy makers and governments account-
able for making promised changes and meeting federal acces-
sibility regulations (e.g., ADA [3, 2]); third, to provide a fast 
and low-cost method to help city governments—particularly 
those without full-time sidewalk or ADA staff—track, triage, 
and fx identifed issues; and fnally, to provide granular geo-
located sidewalk accessibility data to enable more informed 
decision-making for policy makers and urban planners. 

In summary, the contributions of this paper include: (1) a 
new deep learning approach to automatically validate crowd-
sourced labels of sidewalk accessibility problems in GSV 
imagery; (2) a related approach to automatically fnd and label 
sidewalk problems in GSV imagery; and (3) a preliminary 
analysis of how these techniques generalize to other cities. 

RELATED WORK 

Residual Neural Networks in Computer Vision 
Recent advances in deep learning and neural networks have 
dramatically improved computer vision performance, includ-

ing for facial recognition [48], scene reconstruction [12], and 
even image translation [34]. Our approach uses Residual 
Neural Networks (ResNets) [33, 60, 61], a specifc favor 
of neural network with shortcut connections between inner 
network layers that allow them to avoid some sources of over-
ftting. ResNets achieve state-of-the-art results in many appli-
cations [60, 33]. While we do not provide any additions to the 
core methods present in the vision literature, we believe our 
contribution to be a novel application of these techniques in a 
particularly important domain. 

Computer Vision for Urban Features 
The computer vision community has studied urban scenes in 
a variety of contexts (e.g., for self-driving vehicles [18, 24, 
16], for tracking urban change [11]). To train these machine-
learning systems, signifcant effort has been devoted to de-
veloping labeled street-level imagery (e.g., the CityScapes 
Dataset [18]). However, these data (and the models trained 
with them) focus primarily on street features relevant to ve-
hicles, not pedestrians. Existing literature on detecting curbs 
and curb ramps does so largely through the lens of parking [16, 
24] using real-time data generated from sensing devices that 
are widely deployed on autonomous vehicles. While several 
commercial services gather urban data [6, 4] and apply com-
puter vision [5], these are not targeted explicitly at identifying 
accessibility features, are not open source, and have not been 
evaluated scientifcally, so it is not possible to directly compare 
the performance of these systems with our own. In general, 
using CV techniques to automatically detect sidewalk features 
for people with differing mobility remains underexplored. 

Most related to our work is that of Sun et al., which identi-
fes missing curb ramps in GSV panoramas using a Siamese 
trained fully convolutional context network (SFC) that eval-
uates the context around regions of the image [59]. While 
promising, this work is limited by a small training dataset 
(1087 labeled intersections from Tohme [32]), focuses only on 
missing curb ramps, and achieved only marginal results (recall 
of less than 30%). 
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Geographic Information Systems 
Geographic Information Systems (GIS) researchers have 
worked with pedestrian infrastructure, including the devel-
opment of an algorithm for combining sidewalk data with 
street-grid data [37], computing distances of sidewalk paths 
using manually-labeled satellite imagery [36], and exploring 
correlations between census data and sidewalk data with the 
goal of improving community health outcomes [27]. This 
work, however, focuses on performing computations with ex-
isting databases of sidewalk features, not on gathering new 
data about sidewalks. These existing databases are either 
provided by local governments or laboriously created by re-
searchers manually labeling map data. Our research extends 
the prior work by contributing new automated approaches to 
assess sidewalks using streetscape imagery. 

Uses of Google Streetview in Computer Vision 
Google Streetview panoramas, our primary source of imagery, 
have been used to semi-automatically track urban greenery 
[44, 42, 43], predict real-estate prices [40], and train convo-
lutional neural networks (CNNs) to detect changes in urban 
areas over time [56]. Some preliminary work exists on using 
GSV to identify street-level infrastructure for pedestrians. For 
example, Ahmetovic et al. [9, 7] identify striped ("zebra") 
crosswalks with a recall of 90% and precision of 60% using 
a combination of GSV panoramas and satellite imagery. Our 
research complements and extends prior work by using GSV 
and deep learning methods to semi-automatically assess side-
walk features relevant to accessibility: curb ramps, missing 
curb ramps, obstructions, and surface problems. 

Hybrid Crowdsourcing and Computer Vision 
While recent developments in deep learning have improved au-
tomatic object detection performance, results still vary and are 
highly context-dependent. Thus, researchers often combine 
automated solutions (which are fast but noisy) with human 
work (which is slow and expensive but can perform better 
than machines for some problems)—so called hybrid crowd-
sourcing + computer vision systems. For example, Hara et 
al. developed Tohme [32], which combined manual labeling 
with computer vision for semi-automatically identifying curb 
ramps and missing curb ramps in streetscape imagery. Their 
hybrid system performed almost as well as an all-manual ap-
proach while reducing the manual labor time cost by 13% [32]. 
Ahmetovic et al. also explored the use of hybrid automated + 
crowd-sourced labels for crosswalk detection and found that 
humans were able to improve recall from 77% to 93% and 
improve precision from 94% to 97%, but with a signifcant in-
crease in cost and time [9]. Though our current work explores 
a purely automated solution, future systems could incorporate 
our models to reduce manual labor or improve accuracy. 

APPROACH 
We explore two applications of deep learning to streetscape 
images: automatically validating human labels on pre-labeled 
GSV panoramas and automatically labeling GSV panoramas 
to locate and classify sidewalk accessibility problems. For 
both tasks, we use a deep learning approach called a residual 
neural network (ResNet), which are increasingly common in 

computer vision due to their relatively fast training and high 
performance [33]. While we construct individual models for 
each task, both networks are trained on the same three input 
features: (i) image crops from GSV panoramas; (ii) positional 
features describing the position of a point in a scene; and (iii) 
geographic features describing the location of a scene within 
the broader context of a city’s geography. Below, we describe 
our neural network architecture, our training and test datasets, 
and expand on our two tasks. Our system, implemented in 
PyTorch, is open source and publicly available.2 

Architecture 
Residual Neural Networks 
While traditional deep neural networks can degrade in perfor-
mance with more layers due to overftting, residual networks 
(ResNets) allow the use of deeper layers to increase accuracy. 
More concretely, the inner layers of ResNet-18 are arranged 
into two-layer “blocks” as shown in Figure 2b where a “short-
cut” connection adds the identity of the input to the block 
output. Given the direct mapping of identity to output, the 
network weights only have to learn the remainder of the under-
lying function mapping input to output, which is referred to as 
the “residual.” For our experiments, we extend the PyTorch 
reference implementations of ResNet-18 by adding layers that 
incorporate positional and geographic features. 

(a) Plain block (b) ResNet block 

Figure 2: Diagram of the inner layers of (a) a plain deep convolutional neural 
network vs. (b) a residual neural network. Figure adapted from [33]. ReLU 
(Rectifed Linear Unit) is defned as relu(x) = max(0,x) 

Figure 3: The structure of our modifed ResNet-18 architecture, which, in 
addition to pixel-based imagery, incorporates extra features such as position 
in scene, depth information, and geographic data. 

Extending Feature Inputs to ResNets 
Typically, ResNet-based neural networks only take images 
as input. In our case, however, we wanted to leverage addi-
tional contextual knowledge such as the position of a crop 
within a streetscape panorama, the geographic location of the 
panorama within the city, or the relative location of a panorama 
2https://github.com/ProjectSidewalk/sidewalk-cv-assets19 
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on a street (i.e., distance from the intersection). To incorpo-
rate both image and non-image input features into the ResNet 
model, we perform a two-stage input process. First, we feed a 
224x224x3 image vector through a series of convolutional lay-
ers derived from ResNet to obtain a 512x1 vector—essentially 
treating intermediate ResNet layers as a method for dimension-
ality reduction (top pathway in Figure 3). We then append our 
additional vector of contextual features (12x1) to this 512x1 
vector to generate a fnal input vector of size 524x1. This 
combined vector is fed into the last layer of the neural net-
work, which outputs a prediction vector of 5x1. Here, rows 
correspond to a prediction confdence for each of the fve 
classes. To determine the fnal prediction, we simply compute 
the argmax of the prediction vector. 

Transfer Learning Using ImageNet 
Finally, to improve performance, we use a popular machine 
learning technique called transfer learning [49] to initialize 
the ResNet model with weights learned from pre-training on 
the ImageNet image corpus [19]. Prior work has shown how 
transfer learning with ImageNet can signifcantly boost per-
formance by leveraging commonalities between images of 
real-world scenes (e.g., [45]). In preliminary experiments, we 
found the addition of transfer learning to signifcantly improve 
our results; for example, by improving auto-validations of 
curb ramps by over 60%. 

Input Features 
We have three categories of input features intended to capture 
both the appearance and geographic structure of a specifc 
point within a GSV panorama: 

• Image Features. A 224x224 pixel RGB image cropped 
from a larger GSV panorama, encoding the visual appear-
ance around the point in a scene. This image is automat-
ically proportioned based on its distance from the GSV 
camera and then downsampled to 224x224x3 before being 
input to the neural network. 

• Positional Features. A 7x1 vector encoding the position 
of the point in the scene, including: (i) the distance of the 
point to the GSV vehicle as calculated by LiDAR (i.e., the 
depth position of the point in the scene); (ii) the sine and 
cosine of the angle between the point and the street axis 
(i.e., the horizontal position of the point in the scene); (iii) 
the sine and cosine of the angle between the point and the 
horizon (i.e. the vertical position of the point in the scene). 

• Geographic Features. A 5x1 vector, which includes: (i) 
the sine and cosine of the axis of the street relative to true 
North; (ii) distance and bearing of the panorama to the 
center of the city; (iii) and the absolute and relative position 
of the panorama within the street segment (i.e., distance 
from the nearest intersection) 

Extracting Image Crops from Point Labels 
Because our human-supplied labels are x,y point labels on 
panoramas (rather than bounding boxes), we needed to derive 
an approach for automatically sizing the crops made around 
those points. The challenge is compensating for differing 
apparent sizes of objects at different distances (i.e., optical 
perspective). For example, a curb ramp 1-meter wide and 5 

meters from the camera will appear larger than an identical 
curb ramp 50 meters away. To incorporate optical perspective 
and to auto-size our crops accordingly, we use the GSV depth 

4data, specifcally: size (in pixels) = 15 ∗ distance + 200. 
This depth-proportioned algorithm was derived empirically 
using the bounding box dataset in [32]. 

Data 
We have three distinct datasets to train, validate, and test 
our task-specifc ResNet models. For training and validation, 
we use the Project Sidewalk dataset [55], which consists of 
205,385 image-based sidewalk accessibility labels (Figure 1) 
across 58,034 GSV panoramas from Washington, D.C. col-
lected via remote crowdsourcing. We randomly partitioned 
these panoramas and their corresponding labels into training, 
validation, and test sets following an 80/10/10 split (Table 1). 
This three-way split is a common machine learning evaluation 
method that reduces overftting by evaluating fnal perfor-
mance on a previously unseen dataset (the test set) [53]. 

For testing, we manually created a ground-truth dataset by la-
beling a subset of the test dataset (224 of the 5774 panoramas). 
This subset was produced to ensure at least 100 examples 
of each label type. For labeling, two authors worked col-
laboratively to comprehensively label all visible accessibility 
problems in each panorama. Consensus was achieved on every 
placed label. Each panorama required approximately 4-5 min-
utes to label completely. Any accessibility problems which 
were completely obscured or too distant to be identifed with 
certainty were left unlabeled. The size of the fnal ground truth 
dataset is shown in Table 1. 

Project Sidewalk Ground Truth 
Train Val Test Total 

Number of Panos 46,463 5,797 224 52,484 

Missing Curb Ramp 15,692 1,872 135 17,699 
Surface Problem 7,003 897 224 8,124 
Obstruction 17,519 2,305 142 19,966 
Curb Ramp 119,799 14,731 662 135,192 

All Labels 160,013 19,805 1,163 180,981 

Table 1: Training, Validation, and Test (Ground Truth) set sizes, which con-
tain panoramas and image-based sidewalk accessibility labels. The training 
and validation sets, used for developing models, were created with crowd-
sourced labels from Project Sidewalk. The test set, used to evaluate the 
models, was created from labels manually added by the authors. 

Tasks 
We investigate two applications of our ResNet model to 
streetscape imagery: automatically validating crowdsourced 
labels and automatically labeling sidewalk accessibility issues. 
For validation, we input previously supplied manual sidewalk 
accessibility labels—in the form of an image crop around the 
label plus positional and geographic features—to our ResNet 
model. Here, our model outputs its own prediction, which 
could be used to confrm the human label or fag it for fur-
ther review. For labeling, we input an entire GSV panorama 
and our model automatically fnds and classifes sidewalk ac-
cessibility problems. Again, here low-confdence predictions 
could be crowdsourced for manual validation (similar to [32]). 
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Because the tasks are different, we train separate ResNet mod-
els for each. Just as with humans [32], fnding and labeling 
problems is signifcantly harder than validating existing labels 
because the former requires a full scan of an image rather than 
assessing just a pre-cropped portion. 

Validation Task 
For validation, we frst extract crops around each human-
supplied point label as well as corresponding positional and 
geographic features. We then input these features into our 
model for classifcation, which outputs a 5x1 vector of conf-
dence scores, one for each of the four label types: curb ramp, 
missing curb ramp, obstruction, and surface problem, plus 
an additional null confdence used to predict the absence of 
a label. To evaluate performance, the model’s precision and 
recall are computed on the ground truth dataset. 

Center Crop Generation. For the validation task, image crops 
are generated using the techniques described above: an auto-
sized crop is extracted centered on each x,y point label (Table 
2). To predict the absence of an accessibility problem, we 
also generate a set of null crops via uniform random sampling 
of unlabeled (lacking a structure of interest) x,y panorama 
coordinates. If a randomly-sampled null crop overlaps a crop 
containing a label, it is discarded. Null crops are sampled 
only between the horizon and 1600 pixels above the bottom 
of the panorama, which removes extraneous ‘sky’ and ‘road’ 
imagery. These ranges were determined by the maximum 
y-axis range of all crowdsourced labels used for training. 

Labeling Task 
While the validation task is focused on validating manually 
labeled panoramas, the auto-labeling task is focused on auto-
matically fnding and classifying sidewalk accessibility prob-
lems in GSV panoramas. Here, we use a standard sliding 
window approach [22], which breaks the panorama into small, 
overlapping crops that are then passed into the neural network 
for classifcation. 

The neural network outputs a 5x1 prediction vector for each 
crop, from which we compute a single predicted class by tak-
ing the argmax to fnd the class with the greatest confdence. 
Crops with a predicted class of null are ignored. The remaining 
predictions are then clustered using non-maximum suppres-
sion [22]. That is, overlapping predictions for a given label 
type are grouped together, and the prediction with the highest 
confdence is kept, while weaker predictions are suppressed. 
We used an overlap threshold of 150 pixels determined via 
qualitative evaluation. A fnal culling step is then applied to 
remove predictions with low confdence, adjustable with a 
tunable hyperparameter, γ—a larger value of γ results in fewer 
false positives, improving precision, while a smaller γ results 
in fewer false negatives, improving recall. After culling, the 
model outputs the fnal predicted labels. 

To evaluate performance, we compare the model-predicted 
labels to the author-supplied labels on panoramas from the 
ground truth dataset. To determine which predictions are ‘cor-
rect’ and which are not, each label from the ground truth 
dataset is assigned a (width, height) proportional to its depth 
in the panorama, using the same algorithm as is used for pro-

Centered Crops Sliding Window Crops 

Curb Ramp 130,314 159,039 
Missing Ramp 17,173 21,552 
Obstruction 19,583 25,162 
Sfc Problem 7,592 9,933 
Null Crop 49,248 139,389 
Total 223,910 355,075 

Table 2: Number of training crops for the validation and labeling models 
produced using the center-crop and sliding window techniques, respectively. 

ducing crops. If the distance between the predicted label and 
the ground truth label is ≤ max(width, height) of the ground 
truth crop, the predicted label is marked correct. Each time a 
prediction is marked as correct, the corresponding ground truth 
label is marked as ‘accounted for’ and no other predictions can 
be marked as correct with it. This prevents double-counting 
of correct predictions: the number of correct predictions can 
never exceed the number of ground truth labels. 

Sliding Window Crop Generation. For the labeling task, mod-
els are trained on crops produced using a sliding window 
(Table 2). Each panorama in the training set is partitioned into 
a regular ‘grid’ of overlapping crops with the centers a stride 
length distance apart. Any crop from the grid which contains a 
label from the dataset within stride pixels of its center is labeled √ 

2 
accordingly; any crop containing multiple labels of different 
types is ignored. Sliding window crops always overlap, so 
labeled items from the dataset often appear in multiple crops. 
Therefore, the set of sliding window crops is larger than those 
created for training the validation model using the centered-
cropping technique. Crops containing no labeled sidewalk 
problems are assigned a label of null. As the vast majority 
of sliding window crops from any panorama are null, all but 
three uniformly randomly sampled nulls per panorama are 
discarded in order to prevent dataset imbalance. 

Stride length is an adjustable hyperparameter, set heuristi-
cally in our experiments at 100 pixels in both the vertical and 
horizontal direction. A smaller stride increases computation 
time as it produces more crops but also results in fewer false 
negatives, since the probability of producing a crop centered 
around a given label is increased. The window size at each 
crop location is determined using the same depth-proportioned 
algorithm as with the centered crops. 

RESULTS 
Overall, our models appear to substantially improve upon the 
performance of previous machine learning-based sidewalk 
assessment approaches (e.g., Tohme [32] and Sun et al. [59])— 
though direct comparisons are diffcult due to a lack of open 
datasets and software. Perhaps more impressively, our pre-
cision and recall on the auto-labeling task meets or exceeds 
the performance of a group of fve human labelers in Hara et 
al. [30]. Below, we examine the performance of our ResNet-
based models on our two tasks (addressing R1), analyze the 
effect of our contextual (non-image) input features (R2) and 
training data amount (R3) on performance, and investigate the 
generalizability of our models across cities (R4). 
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Figure 4: To qualitatively assess our auto-validation model, we randomly selected and manually reviewed approximately 50 false positive and 50 false negative 
errors per label type (414 assessments total). We present the top three most common errors for both categories above. For example, 30% of falsely identifed curb 
ramps contained inconsistent lighting due to shadows, which confused our model. 

R1: Evaluating Auto-Validation Performance 
Overall, the average precision and recall of the validation 
model was 81.3% and 77.2%, respectively. The model per-
formed best on curb ramps, with a precision of 93.2% and 
recall of 96.8% and obstructions with 83% precision and 82% 
recall while surface problems were the most challenging, with 
a precision of 75.32% and a recall of 59.45%. Surface prob-
lems vary widely in appearance (e.g., cracks, grass, upended 
concrete) and location (e.g., anywhere on a street segment), 
which confounds our model. Importantly, the auto-validation 
model performs well on null crops containing no labeled fea-
ture; correctly identifying almost 90% of these instances. 

To better understand performance, we created a confusion 
matrix (Figure 5a), which helps highlight inter-class errors. 
This matrix is normalized by dividing each box by the number 
of actual examples of that type, such that each column sums to 
1, sans rounding; the numbers down the diagonal are therefore 
the recall for that label type. The most common confusion 
of missing curb ramps for curb ramps is likely due to image 
and contextual similarities: they both appear at the interface 
between road and sidewalk and occur at street corners. 

(a) Confusion matrix with 
recall on the diagonal. 

(b) Bar plot showing precision and recall for 
each label type. 

Figure 5: Model performance on the validation task. 

Qualitatively Assessing Auto-Validation Errors 
To qualitatively assess auto-validation performance, we ran-
domly selected and manually reviewed 50 false positive and 
50 false negative errors per label type (a total of 414 manual 
inspections). A false positive error occurs when our model 
predicts a label but one does not exist. A false negative is when 
our model does not predict a label but one actually exists. A 
single researcher inductively analyzed the auto-validation re-
sults with an iteratively created codebook—a code set was 
produced for each label type. Two additional researchers 
checked the application of these codes for verifcation. 

In analyzing false positives, we observed three key sources of 
error: camera or imagery limitations, contextual limitations 
(i.e., a correct classifcation required contextual knowledge 
not yet captured by our model), and/or confounding object 
similarity. For imagery limitations, 30% of falsely identifed 
curb ramps and 41% of surface problems were due to shad-
ows or poor lighting conditions. For contextual limitations, 
53% of surface problem errors and 58% of obstruction errors 
were due to correctly identifying objects that were not on the 
pedestrian pathway—a challenging contextual distinction to 
make. Finally, for object similarity, 86% of missing curb ramp 
false positives were due to misidentifying a normal curb as a 
missing ramp. Inferring missing curb ramps is also challeng-
ing due to contextual limitations: that is, determining whether 
a location actually requires a ramp—a problem that humans 
also struggle with [55]. 

For false negatives, common sources of errors included: low 
resolution imagery, poor object delineation, challenging cam-
era angles, and partial occlusions or obstructions. For example, 
over 30% of false negatives for curb ramps and obstructions 
were due to resolution issues. For poor delineation, 41% of 
false negative curb ramps were due to ramps blending into the 
scene and 21% were due to ‘tricky’ camera angles. Finally, 
for partial occlusions, 23% of false negative obstructions were 
due to co-existing objects in the imagery obscuring the target. 
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Figure 6: Example results from the labeling task, shown with predicted and ground truth labels. (a) Perfect performance. All features detected. (b) Mixed 
performance. Ramps were accurately detected, but the missing ramp was missed, as was the surface problem. Several false positives were predicted. (c) Poor 
performance. One surface problem was detected, but a long section of damaged, and dirty sidewalk pavement was missed. A false surface problem was added. 

R1: Evaluating Auto-Labeling Performance 

Figure 7: Precision-recall curve showing model performance on the labeling 
task. γ values are shown next to data points. 

As expected, for the auto-labeling task, our overall perfor-
mance drops to 47.0% for precision and 41.2% for recall (with 
γ=4). Curb ramps perform best with a precision and recall of 
89.8% and 48.9% while missing curb ramps perform worse 
with a precision=25.5% and recall=31.0%. In comparison to 
auto-validation, the drop in performance makes sense: unlike 
auto-validation where our model is supplied a pre-cropped 
image around a human-supplied label, the auto-labeling task 
searches through an entire panorama attempting to fnd and 
classify problems. To more deeply examine performance and 
the effect of our hyperparameter γ , we created a precision-
recall curve (Figure 7) showing performance for each label 
type, varying by γ . An elbow appears for most of the curves 
at γ ≈ 4, which optimizes both precision and recall. Figure 6 
shows representative examples of our labeling results illustrat-
ing good, mixed, and poor performance, computed with γ = 4. 
Below, we situate our results in the literature. 

Comparison to Human Performance 
Comparisons to prior work are diffcult due to differing 
datasets, ground truth, and the specifc labeling tasks. Prior 
labeling systems, both manual and automatic, make differ-
ing tradeoffs between precision and recall. By varying γ , we 
attempt to achieve a fair comparison and fnd that in some 
cases our automated system’s performance meets or even 
exceeds that of human labelers. For example, in Hara et. 
al. [30], crowdworkers were asked to fnd and draw bound-
ing boxes around missing curb ramps, sidewalk obstructions, 
surface problems, and prematurely ending sidewalks in a man-
ually curated GSV-based image dataset. To evaluate perfor-
mance, Hara examined overall pixel-level overlap (intersection 
over union area) of crowdworker-placed labels vs. researcher-
placed ground truth. On the multi-class labeling task, single 
crowdworker labels (one labeler per image) achieved an over-
all precision of 34% and recall of 26%, while a majority-vote 
solution with fve labelers per image achieved 37% precision 
and 46% recall. At γ = 3.5, our purely automated model 
achieves an overall precision of 38.6% and recall of 49.7%, 
surpassing the majority-vote human labeler on both metrics 
(Figure 7). For more subjective labels such as surface prob-
lems, we can achieve 58% recall at 17% precision (γ = 2), 
which compares favorably to the 26% human accuracy (preci-
sion and recall were not reported) with fve-person majority 
vote in [30]. 

More recently, Hara et al.[32] found that crowdworkers using 
the svLabel tool were able to manually fnd and label curb 
ramps in GSV panoramas with a precision and recall of 85% 
and 89%, respectively. In comparison, with γ = 4, our auto-
labeling model achieves a precision and recall of 89.8% and 
48.9% for curb ramps. By varying γ = 0 to emphasize recall, 
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our model can fnd 89.8% of curb ramps (recall) but at a cost 
of 18.5% precision. While here our auto-labeling performance 
does not yet reach human levels, the task in [32] was far 
simpler as it focused on a single accessibility feature (curb 
ramps) vs. our multi-class labeling problem. 

Comparison to Automated Labeling in Prior Work 
In addition to manual labeling, we also compare our perfor-
mance to two state-of-the-art automated sidewalk labeling 
systems (Table 3). In [32], Hara et al. introduced svDetect, 
which combines a Deformable Part Model[21] with a Support 
Vector Machine (SVM) to automatically detect curb ramps in 
GSV panoramas. svDetect resulted in 67% recall and 26% 
precision (where correctness was measured as 20% overlap 
with ground truth bounding boxes). In comparison, with γ = 2, 
our multi-class labeling model recalls 78% of curb ramps at 
33% precision—an increase of 18% and 27%, respectively. 
More recently, Sun et al. [59] applied a Siamese neural net-
work [14] to identify missing curb ramps in GSV panoramas 
and achieved a 27% recall (precision is not reported). For miss-
ing curb ramps, our ResNet-based neural network achieves 
more than double the recall (58.6%) at a precision of 12%—a 
substantial improvement. 

Tohme[32] Our Model Change 
precision 26% 33.7% +30%Curb Ramp recall 67% 78.7% +17% 

Sun et al.[59] Our Model Change 
precision not reported 12.0% N/AMissing Ramp recall 27% 58.6% +117% 

Table 3: Improvements over prior work in fully automated ML-based methods 
for labeling curb ramps and missing curb ramps in GSV panoramas. Our 
model’s precision and recall are generated with γ=2. 

R2: Effect of Contextual Input Features On Performance 
Our modifed ResNet-18 architecture incorporates non-image 
features such as the position of a crop in a scene (i.e., po-
sitional features) as well as the relative geographic location 
of a panorama in the city (i.e., geographic features). To in-
vestigate the effect of these additional "context" features on 
performance, we experimented with three different input fea-
ture compositions: image-only, image + positional, and all 
features (image + positional + geographical). For the experi-
ments, models were trained on the center-crop training set and 
evaluated on our ground truth dataset. The results are shown 
in Table 4. 

Overall, there are only marginal differences in performance: 
recall improves from 79.6% to 80.1% while precision drops 
from 80.3% to 79.7%; however, each label type is impacted 
differently. For example, fnding surface problems jumps 
from 48.5% with image-only features to 56.7% with all fea-
tures while recall decreases for obstructions: from 73.1% to 
69.8%. Both curb ramps and missing curb ramps beneft from 
the context features (increasing 3-5%), perhaps because of 
predictable geographic patterns—e.g., they tend to occur on 
corners at the end of street segments. Relatedly, because null 
crops are randomly sampled, there are no positional or geo-
graphic patterns to leverage, so the additional features do not 
help recall (indeed, performance decreases by 2% for nulls). 

Precision Recall 

Image Img. + 
Position All Image Img. + 

Position All 

Overall 80.3 79.5 79.7 79.6 80.0 80.1 
Curb Ramp 81.5 80.1 79.7 90.7 93.2 93.6 
Missing Ramp 80.2 77.8 80.6 50.7 53.0 51.8 
Obstruction 84.9 84.9 85.4 73.0 71.9 69.8 
Sfc Problem 79.3 75.6 73.5 48.5 50.8 56.7 
Null 75.6 79.2 79.3 89.4 87.5 87.6 

Table 4: Changes in precision and recall with the addition of positional 
features and geographic features. Color shading indicates increase or decrease 
in performance from baseline (image features only). 

R3: Performance as a Function of Training Set Size 

Figure 8: Performance overall and by feature type as the size of the training 
set increases. Note the log scale on the x axis. 

As noted in the Introduction, previous work applying com-
puter vision to sidewalk assessment has used relatively small 
datasets. For example, Hara et al.’s used 2,877 curb ramp im-
age crops [32] and Sun et al. used 647 missing curb ramps [59]. 
To explore the effect of dataset size on performance, we trained 
our auto-validation model on increasingly large, randomly 
sampled subsets of our training dataset. Our results are shown 
in Figure 8. Unsurprisingly, performance is positively corre-
lated with training set size. With only 1,000 crops, our overall 
precision and recall was 61% and 63.9%, which improves to 
79.7% and 80.4% with the full training set (213,000 crops). In-
terestingly, even at the maximum training set size, a plateau is 
not yet reached, particularly for the worst performing classes 
(surface problems and missing curb ramps)—which suggests 
that even more training data would be benefcial. 

R4: Exploring Cross-City Generalizability 
While the results presented above were focused on Washington 
DC, ideally a model trained on one city’s streetscape images 
would generalize to other cities. However, as noted in [32, 
55], sidewalk infrastructure can vary in quality and design 
across geographic areas and neighborhood types (e.g., subur-
ban residential vs. downtown commercial)—impacting visual 
appearance. To examine the cross-city generalizability of our 
models, we use recent open datasets from two new Project 
Sidewalk deployment cities: Seattle, WA (a major US city on 
the west coast with 750,000 residents) and Newberg, OR (a 
small town outside of Portland, OR with 22,000 residents). 

In total, Seattle and Newberg have over 80,000 new GSV-
based crowdsourced sidewalk image labels; however, for our 
experiments, we use a subset: the 9,535 labels created or val-
idated by members of the Project Sidewalk team (to ensure 
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Figure 9: Precision and recall of our auto-validation model trained using four different approaches and tested on Seattle and Newberg. 

maximum quality). For each city, an additional 1,500 null 
labels were randomly sampled from the GSV panoramas. For 
each label, we used center cropping (described in 3.4) to trans-
form points to image crops. Crops were randomly partitioned 
into train and test sets with an 80/20 split (see Table 5). 

Seattle 
Train Test 

New
Train 

berg 
Test 

Number of Panos 3,101 775 3,199 801 
Curb Ramp 
Missing Ramp 
Obstruction 
Surface Problem 
Null 

1,648 
1,194 
633 
1,000 
1,202 

412 
298 
158 
250 
298 

1,814 
588 
307 
446 
1,199 

453 
147 
76 
111 
301 

All Labels 5,677 1,416 4,354 1,088 

Table 5: Table of train and test set sizes for Seattle and Newberg 

In total, we conducted four cross-city experiments—all use 
the auto-validation model but vary in training set composition. 
Each model was evaluated on the test set for its respective city 
(either Seattle or Newberg). The four models included: 

1. Baseline Model: trained on DC only. 
2. DC + New City Model: trained on both DC and the other 

city (either Seattle or Newberg). 
3. New City-only Model: trained on only Seattle or only New-

berg without any DC data. 
4. (Best performing) New City-only Model Initialized with 

DC: same as New City-only, but initialized with the weights 
from the DC model (‘pre-trained’) before training on the 
new city data. 

Results are presented in Figure 9. Both cities demonstrate 
similar trends in performance across the four models. The 
Baseline Model—which is trained on DC-only but tested on 
the new cities—resulted in 55.6% precision and 56.3% recall 
for Seattle and 46.0% and 48.6% for Newberg. Interestingly, 
some label types performed quite well—suggesting some uni-
formity across cities. For example, curb ramps achieved a 
recall of 83.8% in Seattle and 90.5% in Newberg (though 
precisions were at 40% for both cities). This high cross-city 
performance is perhaps because curb ramps are the only de-
signed urban feature in our dataset, which likely resulted in 
visual and contextual consistency—the other label types are 
due to dilapidation (e.g., surface problem) or the lack of urban 
design (e.g., missing curb ramps). 

For the other three models, even training on a small amount of 
new city-specifc data results in signifcant improvement over 
baseline, with Seattle+DC improving from 55.6% to 71.9% 
for precision and 56.4% to 78.4% for recall, and Newberg+DC 
improving from 46.0% to 60.3% for precision and 48.6% to 
75.9% for recall. 

Overall, the best performing method was to use DC data to 
learn neural network weights that were then used to initialize 
(“pre-train”) a model that was further trained on each indi-
vidual city’s data (either Seattle or Newberg). Our results 
are promising: the Seattle model pre-trained on DC achieved 
76.2% precision and 82.8% recall while the Newberg version 
achieved 80.6% precision and 90.2% recall. These results 
are competitive with the auto-validation model trained and 
tested on DC data (from the R1: Evaluating Auto-Validation 
Performance sub-section), with overall 81.3% precision and 
77.2% recall. The results suggest that our models can perform 
well with only a small amount of new training data per city. 

DISCUSSION 
We discuss biases and potential dangers in automating side-
walk assessments, describe dataset limitations and how they 
may impact our results, enumerate future work relevant to 
machine learning, and refect on possible uses for and impacts 
of automatically assessing sidewalks. 

Biases in Automating Sidewalk Assessment 
Any Artifcial Intelligent (AI) or Machine Learning (ML) sys-
tem contains intrinsic norms, values, and biases [25, 26]. Ours 
is no different. These exist at many levels, from the data col-
lection [25] to the design and implementation of the machine 
learning approach itself [26]. In this paper, we leverage the 
Project Sidewalk dataset, which offers highly granular, geo-
located sidewalk accessibility labels; however, the four label 
types (curb ramps, missing curb ramps, obstructions, and 
surface problems) do not comprehensively capture sidewalk 
accessibility. For example, no labels exist for crosswalks, ac-
cessible pedestrian signals (e.g., audio-based stoplights), stairs, 
or accessible public transit stops. 

Our ML approach may also introduce new biases. For instance, 
our system, though successful in a small number of cities, may 
not work in locations where sidewalk problems are less obvi-
ous and detectable or where streetscape imagery is not widely 

9 



available. Failures in our ML model may incorrectly inform 
policymakers that certain sidewalks are accessible, hampering 
appropriate sidewalk transportation and funding. We empha-
size that ‘on-the-ground’ investigations should accompany the 
use of these ML tools to provide a mechanism for continued 
community involvement. 

Dataset Limitations 
Neural networks are notably data-hungry as their expansive 
parameter space requires a large amount of training data. Our 
project is enabled by the size and richness of the crowd-
sourced Project Sidewalk dataset. As expected, however, 
crowdsourced data is noisy, which can undermine ML model 
training. the task of sidewalk assessment for accessibility 
problems is inherently subjective and consistent labeling is 
diffcult even for humans. For example, labelers may place 
labels differently for the same accessibility problem. Similarly, 
some sidewalk areas are occluded from view within panorama 
images, making assessment impossible. While consistent, 
detailed labeling rules and training help, labelers still face 
ambiguity—such as, "is this a surface problem or an obstruc-
tion?" "Are pedestrians intended to cross at this intersection?" 
Finally, in Project Sidewalk, crowdworkers are not asked to 
comprehensively label each visited GSV panorama—instead, 
their focus is on fnding accessibility problems. So, once a 
problem is labeled, it need not be labeled in adjacent panora-
mas. This ‘under-labeling’ per panorama may contribute to 
artifcially high false negative rates in our model evaluations. 

Future Work: Data and Computer Vision Methods 
In this paper, we trained models separately for the auto-
validation and auto-labeling tasks, as this increased perfor-
mance. For improved trainability and usability, future work 
should explore the development of a universal model that 
would be optimal for both tasks. 

Collecting additional data will also improve the performance 
of our models, as shown by our investigations of performance 
as a function of training set size. We will need more large, 
labeled sidewalk accessibility datasets from cities around the 
world, for which we will continue to reach out to potential 
communities and partners. 

Mechanisms for improving human-labeled data quality remain 
an open question for Project Sidewalk. Also, with more de-
tailed training data, it may become possible to train our system 
to produce more accurate and nuanced labels, such as the 
severity of a surface problem or the presence of friction strips 
on curb ramps. The additional data needed for these tasks is al-
ready being collected by Project Sidewalk, with crowdworkers 
rating the severity of problems on a 1-5 scale. Including these 
ratings in our model is a logical frst step towards increased 
label detail. 

The performance of our neural network may transfer from one 
city to another to some degree, as shown by our Newberg and 
Seattle experiments, but will likely be lower due to differences 
between cities. The ability to transfer trained networks be-
tween cities could ease data collection requirements for new 
areas, but at the cost of potentially excluding communities 
with drastically different sidewalk infrastructure. 

Impact on Sidewalk Accessibility 
Our overarching long-term vision to be able to automatically 
assess the accessibility of cities at scale within hours. This 
would put a powerful accountability tool in the hands of acces-
sibility advocates, for example when monitoring the adherence 
of cities to ADA mandates. However, automation of any task 
brings up a number of complex challenges and ethical consid-
erations that merit further discussion. 

While our machine learning approach demonstrates a signif-
icant improvement over the state-of-the-art on image-based 
automated assessment of sidewalk-level accessibility prob-
lems, it is important to assess how to use these results to 
meaningfully affect sidewalk accessibility. In addition to iden-
tifying concrete problems to be solved, the results could be 
aggregated into quantitative accessibility metrics on the street, 
neighborhood, or city level, as in the work proposing AccessS-
core [54]. This would allow for users to make more informed 
choices about neighborhoods, housing, and transportation. We 
also see potential future applications to the problem of routing 
users with differing mobility (e.g.,[58]), although this task is 
notably harder and requires more precision than our algorithm 
can yet provide. For example, even one missed obstruction 
could render a route impassible. 

This paper’s approach only leverages a portion of the data 
available through Project Sidewalk, which now include ad-
ditional tags on labels such as the presence or absence of 
friction strips on curb ramps, differentiation between types 
of obstacles such as street poles or cars, and severity metrics. 
Incorporating all of these details into automatic classifers in a 
manner similar to this work could also result in more usable 
and accurate metrics for routing and other applications. 

CONCLUSION 
The overarching goal of our work is to develop fast and accu-
rate sidewalk assessment methods using machine learning to 
help transform how city governments and citizens alike track, 
maintain, and use pedestrian infrastructure. In this paper, we 
have demonstrated a promising deep learning approach for 
auto-validating and auto-labeling sidewalks in streetscape im-
agery. Our ResNet models signifcantly improve upon the 
performance of previous automated systems and, in some 
cases, meet or exceed human labeling performance. 
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