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Abstract

Leveraging text, such as social media posts,
for causal inferences requires the use of NLP
models to ‘learn’ and adjust for confounders,
which could otherwise impart bias. How-
ever, evaluating such models is challenging,
as ground truth is almost never available. We
demonstrate the need for empirical evaluation
frameworks for causal inference in natural lan-
guage by showing that existing, commonly
used models regularly disagree with one an-
other on real world tasks. We contribute
the first such framework, generalizing several
challenges across these real world tasks. Us-
ing this framework, we evaluate a large set
of commonly used causal inference models
based on propensity scores and identify their
strengths and weaknesses to inform future im-
provements. We make all tasks, data, and mod-
els public to inform applications and encour-
age additional research.

1 Introduction

A frequent goal for computational social science
practitioners is to understand the casual effect of
intervening on a treatment of interest. Researchers
often operationalize this by estimating the average
treatment effect (ATE) of a specific treatment vari-
able (e.g. therapy) on a specific outcome (e.g. sui-
cide) (Pearl, 1995, 2009; Rosenbaum, 2010; Keith
et al., 2020). A major challenge is adjusting for
confounders (e.g. comments mentioning depres-
sion) that affect both the treatment and outcome
(depression affects both an individual’s propensity
to receive therapy and their risk of suicide) (Keith
et al., 2020). Without adjusting for depression as a
confounder, we might look at suicide rates among
therapy patients and those not receiving therapy,
and wrongly conclude that therapy causes suicide.

The gold standard for avoiding confounders is to
assign treatment via a randomized controlled trial
(RCT). Unfortunately, in many domains, assigning

Figure 1: Causal graph representing the the context of
our evaluation framework. All edges have known prob-
abilities. While our framework naturally generalizes to
more complex scenarios, we chose binary treatments
and outcomes, and a binary latent confounder, as even
in this simple scenario, current models struggle (§7).

treatments in this manner is not feasible (e.g. due to
ethical or practical concerns). Instead, researchers
conduct observational studies (Rosenbaum, 2010),
using alternate methods to adjust for confounders.

Text (e.g. users’ social media histories) can
be used to adjust for confounding by training a
model to recognize confounders (or proxies for
confounders) in the text, so that similar treated and
untreated observations can be compared. However,
a recent review (Keith et al., 2020) finds that evalu-
ating the performance of such models is “a difficult
and open research question” as true ATEs are al-
most never known, and so, unlike in other NLP
tasks, we cannot know the correct answer. In this
work, we find that this challenge is amplified, as
models disagree with one another on real world
tasks (§3) – how do we know which is correct?

As ground truth is almost never available, the
only1 practical method to evaluate causal inference
models is with semi-synthetic data, where synthetic
treatments and outcomes are assigned to real ob-
servations, as in Fig. 1 (Dorie et al., 2019; Jensen,
2019; Gentzel et al., 2019). While widely-used
semi-synthetic benchmarks have produced positive
results in the medical domain (Dorie et al., 2019),

1With the extremely rare exception of constructed obser-
vational studies, conducted with a parallel RCT.



no such benchmark exists for causal inference mod-
els using text (Gentzel et al., 2019; Dorie et al.,
2019; Jensen, 2019; Keith et al., 2020).

In this work, we contribute the first evaluation
framework for causal inference with text, consist-
ing of five tasks inspired by challenges from a
wide range of studies (Keith et al., 2020) (§4): Lin-
guistic Complexity, Signal Intensity, Strength of
Selection Effect, Sample Size, and Placebo Test.
Each semi-synthetic task is generated (§5) from
real Reddit users’ profiles, perturbed with synthetic
posts to create increasing levels of difficulty (§5.2).
This principled approach lets us evaluate the spe-
cific strengths and weakness of widely-used models
(§6.1) and estimators (§6.2).

Concerningly, we find that almost every model
predicts a false significant treatment effect when
none is present, which could be greatly misleading
to unwary practitioners (§7). While we find that
each model struggles with at least one challenge,
models leveraging recent, hierarchical, transformer-
based architectures perform best, although such
models are not yet widely used (Keith et al., 2020).
For NLP researchers: We make our tasks, data
and models publicly available2 to encourage the de-
velopment of stronger models for causal inference
with text and identify areas for improvement (§8).
For CSS practitioners: We identify strengths and
weaknesses of commonly used models, identifying
those best suited for specific applications, and make
these publicly available2 (§ 8).

2 Background and Related Work

Causal Inference Primer. We formalize causal
inference using notation from Pearl (1995). Given
a series of n observations (in our context, a so-
cial media user), each observation is a tuple Oi =
(Yi, Ti,Xi), where Yi is the outcome (e.g. did user
i develop a suicidal ideation?), Ti is the treatment
(e.g. did user i receive therapy?), and Xi is the
vector of observed covariates (e.g. user i’s textual
social media history).

The Fundamental Problem of Causal Inference
is that each user is either treated or untreated, and
so we can never observe both outcomes. Thus, we
cannot compute the ATE = 1

n

∑n
i=1 Yi [Ti = 1]−

Yi [Ti = 0] directly, and must estimate it by find-
ing comparable treated and untreated observations.
To do so, it is common practice to use a model to
estimate the propensity score, p̂(Xi) ≈ p(Ti =

2Dataset Website

1|Xi), for each observation i. As treatments are
typically known, propensity score models are effec-
tively supervised classifiers, predicting Ti, given
Xi. Matching, stratifying, or weighting using these
propensity scores will produce an unbiased ATE
estimate (§6.2) if three assumptions hold: all con-
founders must be observed, propensity scores must
be accurate, and there must be overlap in the dis-
tribution of covariates in the treated and untreated
groups (common support assumption) (Rosenbaum,
2010; Hill and Su, 2013). In practice, verifying
these assumptions is difficult, hence the need for
empirical evaluation.

Causal Inference and NLP. Until recently, there
has been little interaction between causal infer-
ence researchers and the NLP research commu-
nity (Keith et al., 2020). There are many ways to
consider text in a causal context, such as text as
a mediator (Veitch et al., 2019), text as treatment
(Wood-Doughty et al., 2018; Egami et al., 2018;
Fong and Grimmer, 2016; Tan et al., 2014), text as
outcome (Egami et al., 2018; Zhang et al., 2018),
and causal discovery from text (Mani and Cooper,
2000; Mirza and Tonelli, 2016). However, we nar-
row our focus to text as a confounder, as in Keith
et al. (2020). This is an important area of research
because the challenge of adjusting for confound-
ing underlies most causal contexts, such as text as
treatment or outcome (Keith et al., 2020). Effective
adjusting for confounding with text enables causal
inference in any situation where observations can
be represented with text – e.g. social media, news
articles, and dialogue.

Adjusting for Confounding with Text. A recent
ACL review (Keith et al., 2020, Table 1) sum-
marizes common practices across a diverse range
of studies. Models and text representations used
in these applications do not yet leverage recent
breakthroughs in NLP, and generally fall into three
groups: those using uni- and bi-gram representa-
tions (De Choudhury et al., 2016; Johansson et al.,
2016; Olteanu et al., 2017), those using LDA or
topic modeling (Falavarjani et al., 2017; Roberts
et al., 2020; Sridhar et al., 2018), and those using
neural word embeddings such as GLoVe (Pham
and Shen, 2017) and BERT (Veitch et al., 2019).
Three classes of estimators are commonly used to
compute the ATE from text data: inverse proba-
bility of treatment weighting (IPTW), propensity
score stratification, and matching, either using
propensity scores or some other distance metric.

https://behavioral-data.github.io/CausalInferenceChallenges/


Figure 2: Treatment accuracy and ATE for both real world experiments, with bootstrapped 95% confidence
intervals. Note that for the Gender Experiment, the models with the highest accuracy have the lowest ATE.

In this work, we evaluate at least one variant of
every commonly used model (§6.1) and estimator
(§6.2). While we focus on the propensity score
methods, which are the most popular (Keith et al.,
2020), our framework’s structure enables evalu-
ation of any ATE estimation method, including
those computed using non-propensity score-based
matching, such as TIRM (Roberts et al., 2020) and
exact matches (Mozer et al., 2020).

Evaluation of Causal Inference. In rare special-
ized cases, researchers can use the unbiased out-
comes of a parallel RCT to evaluate those of an ob-
servational study, as in Eckles and Bakshy (2017).
This practice is known as a constructed observa-
tional study, and, while useful, is only possible
where parallel RCTs can be conducted. Out-
side these limited cases, proposed models are typi-
cally evaluated on synthetic data generated by their
authors. These synthetic datasets often favor the
proposed model, and do not reflect the challenges
faced by real applications (Keith et al., 2020).

Outside of the text domain, widely used evalu-
ation datasets have been successful, most notably
the 2016 Atlantic Causal Inference Competition
(Dorie et al., 2019), and a strong case has been
made for the empirical evaluation of causal infer-
ence models (Gentzel et al., 2019; Jensen, 2019).
In the text domain, matching approaches have been
evaluated empirically (Mozer et al., 2020), but this
approach evaluates only the quality of matches, not
the causal effect estimates. In contrast, our work
applies to all estimators, not just matching, and
evaluates the entire causal inference pipeline.

3 Current Models Disagree

Recent causal inference papers (Veitch et al., 2019;
Roberts et al., 2020; De Choudhury et al., 2016;
Chandrasekharan et al., 2017; Bhattacharya and
Mehrotra, 2016) have used social media histories to
adjust for confounding. Each of these papers uses
a different model: BERT in Veitch et al. (2019),

topic modeling in Roberts et al. (2020), and logistic
regression in De Choudhury et al. (2016). For all
of these studies, ground truth causal effects are
unavailable, and so we cannot tell if the chosen
model was correct. However, we can compute their
prediction accuracy on propensity scores, and see
if their ATE estimates agree—if they don’t, then
at most one disagreeing model can be correct.

Methods. We conducted two experiments using
real world data from Reddit, inspired by these re-
cent papers. In the Moderation Experiment, we
test if having a post removed by a moderator im-
pacts the amount a user later posts to the same
community again. In the Gender Experiment, we
use data from Veitch et al. (2019) to study the im-
pact of the author’s gender on the score of their
posts. For details on data collection, see §A.

Results. Comparing the performance of nine dif-
ferent models (Fig. 2), we find that all models have
similar treatment accuracy in the Moderation Ex-
periment. However, the models using 1,2-gram
features perform better in the Gender Experiment
than the LDA and SHERBERT models. Most im-
portantly, we see that all models have mediocre
treatment accuracy (Fig. 2a,c) and the models with
the highest treatment accuracy produce the lowest
ATE estimates (Fig. 2b,d), which in many cases
disagree entirely with estimates from other models.

Implications. This should come as a great con-
cern to the research community. We do not know
which model may be correct, and we do not know
whether there may be a more accurate model that
would even further decrease the estimated treat-
ment effect. We derive theoretical bounds and
compute them, finding that in 99+% of cases, these
bounds are looser than those computed empirically
using our framework (§C), making them less use-
ful for model selection. This concern motivates
our research questions (§1) and underlines the im-
portance and urgency of empirical evaluation for
causal inference in natural language. Next, we de-



scribe key challenges in adjusting for confounding
with text and present a principled evaluation frame-
work that highlights these challenges and generates
actionable insights for future research.

4 Challenges for Causal Inference with
Natural Language

Using the common setting of real social media his-
tories (De Choudhury et al., 2016; Olteanu et al.,
2017; Veitch et al., 2019; Choudhury and Kiciman,
2017; Falavarjani et al., 2017; Kiciman et al., 2018;
Saha et al., 2019; Roberts et al., 2020), we identify
five challenges consistently present when represent-
ing natural language for causal inference:

1. Linguistic Complexity: Different expres-
sions can be indicative of important under-
lying commonalities and signals. Someone
who struggles with mental health might write
“I feel depressed” or “I am isolated from my
peers,” which have distinct meanings but both
may be indicative of depression. Can models
recognize that both are relevant?

2. Signal Intensity: Some users only have a few
posts that contain a specific signal (such as
poor mental health) whereas others may have
many posts with this signal. Signals are espe-
cially weak when posts containing the signal
constitute only a small fraction of a user’s
posts. Can models detect weak signals?

3. Strength of Selection Effect: Many studies
have few comparable treated and untreated
users (§2) (Li et al., 2018; Crump et al., 2009).
Can models adjust for strong selection effects?

4. Sample Size: Observational studies often
face data collection limitations.3 Can mod-
els perform well with limited data samples?

5. Placebo Test: Oftentimes, no causal effect
is present between a given treatment and an
outcome. Do models falsely predict causality
when none is present?

While natural language is far more complex than
any finite set of challenges can capture, the five
we have chosen to highlight are challenges that
regularly need to be addressed in causal inference
tasks that use natural language (Keith et al., 2020).
They also cover three key concepts of model per-
formance: generalizability (linguistic complexity),
sensitivity (signal intensity, strength of selection

3In Keith et al. (2020, Table 1), 8/12 studies had fewer
than 5,000 observations, and 4/12 had fewer than 1,000.

effect), and usability (sample size, placebo test)
that are critical for comprehensive evaluation. To
produce our evaluation framework, we derive a
concrete task from each challenge.

5 Framework for Evaluation

We generate five tasks, each with discrete levels of
difficulty, and corresponding semi-synthetic task
datasets based on real social media histories. With-
out the semi-synthetic component, it would not be
possible to empirically evaluate a model, as we
would not know the true ATE. By basing our user
histories on real data, we are able to include much
of the realism of unstructured text found ‘in the
wild.’ This semi-synthetic approach to evaluation
preserves the best of both worlds: the empiricism
of synthetic data with the realism of natural data
(Jensen, 2019; Gentzel et al., 2019; Jensen, 2019).

5.1 Semi-Synthetic Dataset Generation
The method for generating a semi-synthetic dataset
can be arbitrarily complex, however, for simplicity
and clarity, we generate our datasets according to
a simplified model of the universe; where all con-
founding is present in the text, and where there are
only two types of people, class 1 and class
2 (Fig. 1). In the context of mental health, for
example, these two classes could simply be peo-
ple who struggle with depression (class 1), and
those who don’t (class 2). If models struggle
on even this simple two-class universe, as we find,
then it is highly unlikely they will perform better in
the more complex real world. In this universe, the
user’s (latent) class determines the probability of
treatment and outcome conditioned on treatment.
Dependent on class, but independent of treatment
and outcome is the user’s comment history, which
contains both synthetic and real posts that are input
to the model to produce propensity scores.

We produce each dataset using a generative pro-
cess (§B). For each task, we start with the same
collection of real world user histories from public
Reddit profiles. We randomly assign (with .5/.5
probability) each user to class 1 or class 2.
Into each profile, we insert synthetic posts using
a function fn for class n specific to each task,
described in §5.2. We assign binary treatments
(conditioned on class) and binary outcomes (condi-
tioned on class and treatment) according to a known
probability distribution (§B). These outcomes and
treatments could represent anything of interest, and
they need not be binary.



To estimate the ATE, there must be overlap be-
tween the treated and untreated groups (§2), so
we cannot make all users in class 1 treated and
all users in class 2 untreated; instead, we as-
sign treatment with a biased coin-flip: Treated with
P = .9 and untreated with P = .1 for class 1,
and the opposite for class 2. These true propen-
sities are not more extreme than those commonly
accepted in practice (Crump et al., 2009; Lee et al.,
2011; Yang and Ding, 2018).

Once a treatment has been assigned according
to the class’ probabilities, a positive outcome is
assigned with probability .9 (treated) and .1 (un-
treated) for class 1, and .9 for both treatments
for class 2. These probabilities are the ‘default’
and are used in all Tasks except Tasks 5.2.3 and
5.2.5, where we vary them to explore those specifi-
cally. The objective for models (§6.1) is to recover
these probabilities in the form of a propensity score.

5.1.1 Real World User Histories
We use Reddit user histories as the real world com-
ponent of our semi-synthetic datasets. Reddit was
selected as our natural data source due to its use in
De Choudhury et al. (2016), its public nature, and
its widespread use in the research community.

We downloaded all Reddit comments for the
2014 and 2015 calendar years from the Pushshift
archives (Baumgartner et al., 2020) and grouped
comments by user. After filtering out users with
fewer than 10 comments, we randomly sampled
8,000 users and truncated users’ histories to a max-
imum length of 60 posts for computational prac-
ticality.4 These users were randomly partitioned
into three sets: a 3,200 user training set, an 800
user validation set, and a 4,000 user test set used to
compute Treatment Accuracy and ATE Bias.

5.1.2 Synthetic Posts
When generating semi-synthetic tasks, we insert
three types of synthetic posts (§D), representative
of major life events that could impact mental health,
into real users’ histories:

• Sickness Posts describe being ill (e.g. ‘The
doctor told me I have AIDS’). We vary both
the illness, as well as way the it is expressed.

• Social Isolation Posts indicate a sense of iso-
lation or exclusion. (‘I feel so alone, my last
friend said they needed to stop seeing me.’)

4The resulting set of users had a mean of 41 posts/user,
mean of 37.37 tokens/post, and a mean of 1523.28 tokens/user.

• Death Posts describe the death of companion
(e.g. ‘I just found out my Mom died’). We
vary the phrasing as well as the companion.

A complete list of all posts of each type is in §D.

5.2 Tasks
We consider five tasks focused around the common
challenges for text-based causal inference methods
previously highlighted in §4.

5.2.1 Linguistic Complexity
This task tests a model’s resilience to the linguis-
tic complexity of text inputs, i.e. the ability to
recognize synonyms and the shared importance of
dissimilar phrases. We increase the difficulty in
four steps by increasing the diversity of synthetic
sentences inserted into user histories assigned to
class 1 (i.e. the linguistic complexity of the
dataset): f1 initially appends the same Sickness
Post to the end of each class 1 user’s history;
At the second level of difficulty, f1 selects a Sick-
ness Post uniformly at random; At the third level,
f1 selects either a Sickness or Social Isolation Post;
and at the fourth level, f1 selects a Sickness, Social
Isolation, or Death Post. For each level of diffi-
culty, f2 is the identity function, i.e. user histories
assigned to class 2 are unchanged.

5.2.2 Signal Intensity
This task tests a model’s ability to distinguish be-
tween the number of similar posts in a history.
There are two levels of difficulty. At the easier
level, f1 appends 10 randomly sampled (with re-
placement) Sickness Posts, while f2 is the identity
function. At the harder level, f1 appends only three
Sickness Posts, while f2 appends one.

5.2.3 Strength of Selection Effect
In this and the following tasks, we do not vary f1
or f2. For Strength of Selection Effect, we make
causal inference more challenging by increasing
the strength of the selection effect, decreasing the
overlap between treated and untreated users (§2).
We test two levels of difficulty: a weaker selection
effect (easier) with the same .9/.1 split to assign
the majority of class 1 to the treated group and
class 2 to the control group. For the stronger
selection effect (harder), we increase this split for
class 1 to .95/.05. For both the weak and strong
selection effects, we use f1 to append a single ran-
dom Sickness Post and f2 as the identity function.
Outcome probabilities, conditioned on treatment,
are unchanged from §5.1.



5.2.4 Sample Size

In this task, we test how the models’ performance
drops off as the amount of available training data
is reduced.5 As before, we use f1 to append a
single random Sickness Post and f2 as the identity
function. For the easiest case, we train on all 3,200
users’ histories in the training set. We then create
smaller training sets by randomly sampling subsets
with 1,600 and 800 users.

5.2.5 Placebo Test

The final task assesses a model’s tendency to pre-
dict a treatment effect when none is present. To do
so, we must have asymmetric treatment probabil-
ities between class 1 and class 2. Without
this asymmetry, the unadjusted estimate would be
equal to the true ATE of zero. We use the same
asymmetric class 1 treatment split as in §5.2.3.

We set P (Y = 1|T = 0,class=1) = .05,
P (Y = 1|T = 1,class=2) = .95, and the op-
posite for Y = 0. This gives a treatment effect
of +.9 to class 1 and a treatment effect of -.9
to class 2, making the true ATE for the entire
task equal 0. As in previous tasks, f1 appends
one random Sickness Post and f2 is the identity
function.

6 Causal Inference Pipeline

We evaluate commonly used text representations,
propensity score models, and ATE estimators
(§2).

6.1 Propensity Score Models

The Oracle uses the true propensity scores, which
are known in our semi-synthetic evaluation frame-
work (§5). The Oracle provides an upper-bound on
model performance, only differing from the theo-
retical optimum due to finite sample effects.

We include an Unadjusted Estimator, which
uses the naive method of not adjusting for selection
effects, producing an estimated treatment effect of
ȲT=1 − ȲT=0, and as such is a lower-bound for
models that attempt to correct for selection effects.

We train a Simple Neural Net (with one fully
connected hidden layer) in four variants with dif-
ferent text representations: 1-grams with a binary
encoding, 1,2-grams with a binary encoding, 1,2-
grams with counts, and Latent Dirichlet Allocation

5In Keith et al. (2020, Table 1), 8/12 studies had fewer
than 5,000 observations, and 4/12 had fewer than 1,000.

(LDA) features (Blei et al., 2003) based on 1,2-
grams, counted. We also train Logistic Regression
models on the same four text representations.

Finally, we propose and evaluate a novel cauSal
HiERarchical variant of BERT, which we call
SHERBERT. SHERBERT expands upon Causal
BERT proposed by Veitch et al. (2019), which is
too computationally intensive to scale to user histo-
ries containing more than 250 tokens, let alone ones
orders of magnitude longer, such as in our tasks. In
SHERBERT, we use one pretrained BERT model
per post to produce a post-embedding (Appendix
Fig. 5), followed by two hierarchical attention lay-
ers to produce a single embedding for the entire
history, with a final linear layer to estimate the
propensity score. This architecture is similar to
HIBERT (Zhang et al., 2019), but is faster to train
on long textual histories, as SHERBERT fixes the
pretrained BERT components.

6.2 Average Treatment Effect Estimators

We consider three commonly used ATE estima-
tors – IPTW, stratification, and matching. All three
estimators use propensity scores (§2) but differ in
how they weight or group relevant samples.

Inverse Propensity of Treatment Weighting
estimates the ATE by weighting each user by their
relevance to selection effects:

ÂTEIPTW =
n∑

i=1

(2 ∗ Ti − 1) ∗ Yi

p̂Ti(Xi) ∗
[∑n

j=1
1

p̂Tj (Xj)

]
where Ti, Yi, and Xi are treatment, outcome, and
features for sample i, and p̂T (X) is the estimated
propensity for treatment T on features X. Use of
the Hajek estimator (1970) adjustment improves
stability compared to simple inverse propensity.

Stratification divides users into strata based on
their propensity score, and the ATE for each is
averaged: ÂTEstrat = 1

n

∑
k nk ∗ ÂTEk

where n is the total number of users, nk is the num-
ber of users in the k-th stratum, and ÂTEk is the
unadjusted ATE within the k-th stratum. We report
results on 10 strata divided evenly by percentile,
but results are qualitatively similar for other k.

Matching can be considered as a special case
of stratification, where each strata contains only
one treated user. As matching produces extremely
similar results to stratification, we include details
of our approach and plots of the results in §F.1.
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Figure 3: Results for tasks, with bootstrapped 95% confidence intervals, perturbed along the x-axis for readability.
Within each plot, difficulty increases from left to right. SHERBERT generally does well, especially on Strength of
Selection Effect and Absence of Non-Zero Treatment Effect, but struggles on Signal Intensity.



6.3 Metrics for Evaluation

Our semi-synthetic tasks are generated such that
we know the true ATE and thus can compute the
Bias of ÂTE. A bias of zero is optimal, indicating
a correct estimated ATE. The greater the bias, pos-
itive or negative, the worse the model performance.
This is the primary metric we use in evaluation, and
we compute it for both ÂTEstrat and ÂTEIPTW.
We also consider Treatment Accuracy, the accu-
racy of the model’s predictions of binary treatment
assignment. While higher accuracy is often better,
high accuracy does not guarantee low bias. We
include additional metrics (Spearman Correlation
of Estimated Propensity Scores and Mean Squared
Error of IPTW for each task) in §F.2.

7 Evaluation of Common Models

Transformers better model relevant linguistic
variation. Many trends in the results manifest in
the Linguistic Complexity task (§5.2.1), including
treatment accuracy clustering by text representa-
tion (Fig. 3a). SHERBERT performs well, with
uni- and bi-gram models somewhere in between.
Accuracy correlates fairly well with bias (Fig. 3b,c).
As in nearly all tasks, LDA models perform worst,
not even outperforming the unadjusted estimator.

Transformer models struggle with counting
and ordering. The Signal Intensity task (§5.2.2)
requires models to effectively ‘count’ the number
of posts to distinguish between classes.This is the
only task where n-gram models outperform SHER-
BERT (Fig. 3e,f) and LDA models perform slightly
better than not adjusting at all, due to the stronger
presence of tokens correlated with treatment.

High accuracy often reflects strong selection ef-
fects, not low ATE bias. In the Strength of Selec-
tion Effect task (§5.2.3), we decrease the overlap
in propensity scores between treated and untreated
users which makes it easier to distinguish between
the two groups. We see corresponding increases in
Treatment Accuracy (Fig. 3g), however, bias wors-
ens (Fig. 3h,i). In context of observational studies,
models with high treatment accuracy should be
used with extreme caution — high accuracy likely
reflects that the common support assumption is vio-
lated, preventing causal inference. This highlights
the importance of empirical evaluation of the com-
plete causal inference pipeline.

Transformer models fail with limited data. The
Sample Size task (§5.2.4) explores models’ perfor-

mance on small datasets, a common occurrence in
real world applications. SHERBERT outperforms
other models except when there is very limited data
available, with accuracy and bias dropping below
n-gram features when data is reduced (Fig. 3j,k,l).
Models predict causality when none is present.
Alarmingly, in the Placebo Test (§5.2.5), every
model except SHERBERT failed to include the
(correct) null hypothesis (ATE = 0) in their 95%
confidence intervals (Fig. 3n,o), including high ac-
curacy models using bigram features (Fig. 3m).
This result is of greatest concern, as eight out of
nine methods falsely claim a non-zero effect.
Models have greater impact than estimators.
Each estimator evaluated produced overall similar
results (Fig. 6), with the quality of the propensity
scores being far more impactful. However, IPTW
is more sensitive to extreme propensity scores
(Fig. 3h). See §F.2 for more details.

8 Implications & Conclusions

Causal inferences are difficult to evaluate in the
absence of ground truth causal effects – a limitation
of virtually all real world observational studies.
Despite this absence, we can compare different
models’ estimates and demonstrate that different
models regularly disagree with one another.

Empirical evaluation requires knowledge of the
true treatment effects. Our proposed evaluation
framework is reflective of five key challenges for
causal inference in natural language.

We evaluate every commonly used propensity
score model to produce key insights:
For NLP Researchers, we find that continued de-
velopment of transformer-based models offers a
promising path towards rectifying deficiencies of
existing models. Models are needed that can ef-
fectively represent the order of text, variability in
expression, and the counts of key tokens. Given the
limited availability of training data in many causal
inference applications, more research is needed in
adapting pretrained transformers to small data set-
tings (Gururangan et al., 2020). We hope our public
framework6 will provide a principled method for
evaluating future NLP models for causal inference.
For CSS Practitioners, we find that transformer-
based models such as SHERBERT, which we make
publicly available,5 perform the best in all cases
except those with very limited data. Models with
high accuracy should be applied with great care, as

6Dataset Website

https://behavioral-data.github.io/CausalInferenceChallenges/


this is likely indicative of a strong and unadjustable
selection effect. Many models failed our placebo
test by making false causal discoveries, a major
problem (Aarts et al., 2015; Freedman et al., 2015).
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A Moderation and Gender Experiments – Data Collection Details

A.1 Moderation Experiment
In the Moderation Experiment, we test if having a post removed by a moderator impacts the amount a
user later posts to the same community. For this experiment, we use 13,786 public Reddit histories (all of
which contain more than 500 tokens) from users in /r/science from 2015-2017 who had a not had
a post removed prior to 2018. Our treated users are those who have had a post removed in 2018. Out
untreated users are those who have not had a post removed in 2018 (nor before). The outcome of interest
is the number of posts they made in 2019.

To determine which users have had posts removed, we utilize the Pushshift Reddit API (Baumgartner
et al., 2020). The data acessible via this API, in combination with publicly available Pushshift dump
archives, allow us to compare two snapshots of each Reddit post: one snapshot made within a few seconds
of posting, and one made approximately 2 months later. By comparing these two versions, we can tell a)
which user made the post, and b) if it was removed. This approach is similar to that of Chandrasekharan
et al. (2018).

This experiment mimics the setup in De Choudhury et al. (2016), where each user is represented by
their entire Reddit comment history within specific subreddits. While (De Choudhury et al., 2016) has
been influential in our work, their dataset is not public, and publicly available comparable data contains
only a relatively small set of Reddit users, leading to underpowered experiments with large, uninformative
confidence intervals that fail to reproduce the findings in the original paper.

A.2 Gender Experiment
In the Gender Experiment, we use the dataset made public by Veitch et al. (2019), which consists of single
posts from three subreddits: /r/okcupid, /r/childfree, and /r/keto. Each post is annotated
with the gender (male or female) of the poster, which is considered the treatment. The outcome is the
score of the post (number of ‘upvotes’ minus number of ‘downvotes’).



B Model of Conditional Probabilities used for Assignment of Treatment and Outcome

Latent Class 1User History 
modified by f1
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Hidden From Model

Figure 4: The latent class is used to assign treatments and outcomes to users, and to modify their histories (§5).

Below are the ‘default’ outcome probabilities used in the synthetic data generation process, conditioned
on user class:
P (Y = 1|T = 0,class = 1) = .1, P (Y = 0|T = 0,class = 1) = .9
P (Y = 1|T = 1,class = 1) = .9, P (Y = 0|T = 1,class = 1) = .1
P (Y = 1|T = 0,class = 2) = .9, P (Y = 0|T = 0,class = 2) = .1
P (Y = 1|T = 1,class = 2) = .9, P (Y = 0|T = 1,class = 2) = .1

These probabilities are used unless otherwise indicated in §5.2.



C Theoretical Bounds

We leverage recent results of Arbour and Dimmery (2019) to bound the expected bias of the ATE,
Ȳ [T = 1]− Ȳ [T = 0], by considering the weighted risk of the propensity score:∣∣∣E [Ŷ (T )

]
− E

[
Y (T )

]∣∣∣ ≤ ∣∣∣E [ Y
p(T |X)

S(p̂(T |X),p(T |X))

p̂(T |X)2

]∣∣∣
where p̂ and p are the estimated and true propensity score, and S is the Brier score (1950). Conceptually,
this bound suggests that the bias grows as a function of the Brier score between estimated and true
propensity score (numerator), and the inverse of the squared estimate of the propensity score, significantly
penalizing very small scores.
Findings. We compute these bounds using the estimated propensity score and find that they are largely
uninformative in practice. In 250/252 cases, the empirical confidence interval (Fig. 6) provides a tighter
bound than the theoretical bound, and in 230/252 cases the Unadjusted Estimator (§6.2) also provides a
tighter bound than the theoretical bound. These results again highlight the importance of the principled
empirical evaluation framework presented here.
Details of Derivation. The central challenge is estimating the error of the counterfactual quantities,
Y (1), and Y (0). Recall that in the case of weighting estimators, when the true propensity score (p(·)) is
available, these are estimated as E [y(T )] = E

[
Y

p(T )

]
, where y is the observed outcome. For the problem

addressed in this paper, the propensity must be estimated. Estimating the error for each potential outcome
under an estimated propensity score results in a bias of∣∣∣E [Ŷ (T )

]
− E

[
Y (T )

]∣∣∣ = ∣∣∣E [ Y
p(T |X)

]
− E

[
Y

p̂(T |X)

]∣∣∣
following Proposition 1 of Arbour and Dimmery (2019).

More concretely, an empirical upper bound can be obtained for Equation 1 given a lower bound on
the true propensity score. Specifically, replacing the p with the lower bound and using the weighted
cross-validated Brier score will provide a conservative bound on the bias of the counterfactual. This bound
can be tightened with further assumptions, for example by assuming instance level bounds on p instead of
a global bound. Balancing weights may also be used to estimate the bias directly using only empirical
quantities (Arbour and Dimmery, 2019).

Note that due to the evaluation framework in this paper, the true propensity score p is known, and
therefore we do not need to apply loose bounds.∣∣∣E [Ŷ (T )

]
− E

[
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After obtaining the bounds on the individual counterfactual quantities, the corresponding lower and
upper bias bounds on the average treatment effect can be constructed by considering

Ŷ (0) +

∣∣∣∣E [ y

p(T = 0|X)

S(p̂(0|X), p(0|X))
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respectively.



D Templates for Synthetic Posts

As described in §5.1.2, synthetic sickness, social isolation, and death posts are used to generate our
evaluation tasks. These synthetic posts are selected and inserted into social media histories of real world
users by randomly sampling a template and word pair, or, in the case of Social Isolation Posts, by randomly
sampling a complete post.

D.1 Sickness Posts
Sickness Posts are created by randomly sampling a Sickness Word and inserting it into a randomly
sampled Sickness Template.
Sickness Templates are sampled from:

{The doctor told me I have x,

I was at the hospital earlier and I have x.,

I got diagnosed with x last week.,

Have anyone here dealt with x? I just got diagnosed.,

How should I handle a x diagnosis?,

How do I tell my parents I have x? }

Sickness Words are sampled from {cancer, leukemia, HIV, AIDS, Diabetes, lung cancer,
stomach cancer, skin cancer, parkinson‘s}

D.2 Social Isolation Posts
Social Isolation Posts are randomly sampled from the following set of complete synthetic posts:

{My friends stopped talking to me.,

My wife just left me.,

My parents kicked me out of the house today.,

I feel so alone, my last friend said they needed to stop seeing me.,

My partner decided that we shouldn‘t talk anymore last night.,

My folks just cut me off, they won‘t talk to me anymore.,

I just got a message from my brother that said he can‘t talk to me anymore. He was my

last contact in my family.,

My last friend at work quit, now there‘s no one I talk to regularly.,

I tried calling my Mom but she didn’t pick up the phone. I think my parents may be done

with me.,

I got home today and my partner was packing up to leave. Our apartment feels so empty

now. }

D.3 Death Posts
Death Posts are created by randomly sampling a Death Word and inserting it into a Death Template.
Death Templates are sampled from:

{My x just died,

I just found out my x died,

My x died last weekend,

What do you do when your x dies? This happened to me.,

Has anyone else had a x die recently?,

I lost my x yesterday.,

My x passed away recently.,

I am in shock. My x is gone. }

Death Words are sampled from {Mom, Mother, Mama, Father, Dad, Papa, Brother, Wife,
girlfriend, partner, spouse, husband, son, daughter, best friend}



E Model Implementation, Tuning, and Parameters

E.1 SHERBERT Architecture
Fig. 5 depicts the architecture of SHERBERT as part of the broader ATE estimation pipeline.

ATE Estimation

Propensity Scoring

Representation Learning

Input Textpost0 post1 postkpost2 …

BERT

Linear + Activation

Linear + Activation

Linear + Activation

p

IPTW Stratification Matching

~

User Attention

Post Attention

Treatment Effect

Propensity

User Vectors

Post Vectors

Word Vectors

Tokens

Figure 5: The complete ATE estimation pipeline, with tokens input at the bottom, and an estimate propensity at
the top. ATE estimates are computed with IPTW, Stratification, and Matching (§6.2) based on models’ propensity
scores. This example is instantiated using SHERBERT and detailing its hierarchical architecture. In this pipeline,
other propensity score models could replace the ‘Representation Learning’ box (e.g., Bag-of-n-grams with Logistic
Regression).

Our work attempts to expand the success of large pretrained transformers to long history length using a
hierarchical attention, which is a problem also explored by the HIBERT model in Zhang et al. (2019).
Essentially, SHERBERT differs from HIBERT in that SHERBERT trains a light-weight hierarchical
attention on top of the pretrained BERT model (Devlin et al., 2019) whereas HIBERT is trained from
scratch. This results in a relatively simple training procedure for SHERBERT, and lighter limitations
on history length, both at the local (50 words for HIBERT v. 512 wordpiece tokens for SHERBERT)
and global (30 sentences for HIBERT v. 60 for SHERBERT) scales. This reflects differing tradeoffs;
where HIBERT has a more sophisticated attention mechanism for combining local and global information,
SHERBERT sacrifices some complexity for fast and simple training and longer text histories.

E.2 Practicality of Models
SHERBERT trades-off practicality for performance in comparison to simpler models. For instance, in
most experiments we found SHERBERT takes 10 - 12 hours to train, sometimes requiring multiple starts
to converge to a reasonable model. In contrast, training all other models collectively requires less than
1 hour. Further, the performance of SHERBERT sharply suffered as the number of users was reduced
(Fig. 3j). While effectively training SHERBERT on 1 GPU (Tesla V100) in under 24 hours is quite
practical compared to contemporary text pretraining regimes (Devlin et al., 2019), these issues should be
considered when deciding on a causal text model.

E.3 Hyperparameters
A complete description of parameters and hyperparameters is included in the code repository at Dataset
Website. Basic details are included here.

https://behavioral-data.github.io/CausalInferenceChallenges/
https://behavioral-data.github.io/CausalInferenceChallenges/


In producing n-gram features, a count threshold of 10 is used to filter out low frequency words, and
word tokenization is done using the NLTK word tokenizer. In producing LDA features, we use the Scikit
Learn implementation, with 20 topics. To produce BERT word embedding features, we use the uncased
model of the ‘base’ size.

All models use the Adam optimizer (Kingma and Ba, 2014), with various learning rates decided
empirically depending on model and task to maximize treatment accuracy on the validation set.

For the simple neural network model, we use a hidden size of 10. For SHERBERT, we use hidden sizes
of 1000 and dot-product attention.



F Additional Estimators and Metrics

In order to further detail our findings (§7), we include several additional ATE estimators (§6.2) and metrics
for evaluation (§6.3).

F.1 Matching Estimator
Matching can be considered as a special case of stratification, where each strata contains only one treated
user (§6.2). As our treated and untreated groups are approximately balanced, we implement 1:1 matching,
where each treated user is matched to exactly one untreated user.

While there are many implementations of matching, we implement matching with replacement, as in
Abadie and Imbens (2016, pg. 784):

ÂTEmatch =
1

n

n∑
i=1

(2Ti − 1) (Yi − Yj)

where j is the matched observation, i.e. j = minj∈{1...n} |p̂(Xi)− p̂(Xi)| where Ti 6= Tj .
A recent evaluation of matching techniques for text found no significant difference in match quality
between matches produced with and without replacement (Mozer et al., 2020). We use a caliper value of
.2× the standard deviation of propensity scores in the population, as was found to perform the best by
Wang et al. (2013) and recommended by Rosenbaum (2010, pg. 251).

For each of the five tasks, the matching estimator produces results extremely similar to those of the
stratified estimator (Fig. 6).

F.2 Mean Squared Error of IPTW and Spearman Correlation
In addition to Treatment Accuracy and Bias (§6.3), we computed the Mean Squared Error (MSE) of the
Inverse Probability of Treatment Weights, and the Spearman Correlation of propensity scores.

Mean Squared Error of IPTW shows the absolute error in the calibration of a models’ causal weights:

MSEIPTW =
n∑

i=1


[∑n

j=1
1

p̂Tj (Xj)

]−1
p̂Ti(Xi)

−

[∑n
j=1

1
pTj (Xj)

]−1
pTi(Xi)


2

Notation is the same as in §6.2, with the addition of p as true propensity, which is known in our semi-
synthetic tasks. The MSE is fairly correlated with the Treatment Accuracy, with MSE increasing as
accuracy decreases as the tasks become more difficult. This is especially evident in Fig. F.2b,k.

Spearman Correlation instead shows the relative calibration of a models’ propensity scores. Propen-
sity scores may have poor absolutely calibration, but still have meaningful relative ordering, in which
case the Spearman Rank Correlation is close to its maximum value of 1. The Spearman Correlation
coefficient is simply the Pearson correlation coefficient between the rank variables for the estimated and
actual propensity scores. We find that Spearman Correlation is also quite correlated with the Treatment
Accuracy (Fig. 7c,i)
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Figure 6: Comparison of bias computed using IPTW, Stratification, and Propensity Score Matching, for each task.
Note that matching produces extremely similar results to stratification.
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Figure 7: Treatment Accuracy, Mean Squared Error, and Spearman Correlation for each task. Spearman Correla-
tion varies directly with Treatment Accuracy, whereas Mean Squared Error increases as accuracy falls.


