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Causal Inference with Text

In much causal inference literature: people are represented with structured
covariates (age, gender)

Natural language can contain this information in an unstructured form
We can represent people with text, e.g. social media histories

As long as confounders are encoded in text, we can adjust for them - in theory...
How well does this work in practice?
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Exciting Recent Applications

Many recent papers have applied causal inference methods to text - too many to
list! Keith et. al present an excellent review'.

Areas of applications include:

e Mental Health?
e Gender in Social Media®
e many more...

"Katherine A. Keith, David Jensen, and Brendan O’Connor. Text and Causal Inference: A Review of Using Text to Remove Confounding from Causal Estimates.
(ACL 20)

2M. De Choudhury, E. Kiciman, M. Dredze, G. Coppersmith, and M. Kumar. 2016. Discovering Shifts to Suicidal Ideation from Mental Health Content in Social
Media (CHI "16)

3V. Veitch, D. Sridhar, and D.M. Blei. 2020 Adapting Text Embeddings for Causal Inference. arXiv:1905.12741



Methods for Text-Based Confounding Adjustment

Method

Text Representation Propensity Score Model ATE Estimator

These methods are not the only methods, but they're the most commonly used.

'F. Johansson, U. Shalit, and D. Sontag. 2016. Learning representations for counterfactual inference. In ICML.

2V. Veitch, D. Sridhar, and D.M. Blei. 2020 Adapting Text Embeddings for Causal Inference. arXiv:1905.12741

3N. Kallus, X. Mao, and M. Udell. 2018. Causal inference with noisy and missing covariates via matrix factorization. In NeurlPS.
“M.E. Roberts, B.M. Stewart, R.A. Nielsen. 2020. Adjusting for Confounding with Text Matching. In AJPS.




Evaluation of Methods for Causal Inference with Text

e Evaluation is difficult without ground truth
e Methods are often used without clear justification
e No benchmark exists: how should practitioners choose?



Current Methods Disagree

How much of a problem is the lack of evaluation techniques?

e Conducted experiments inspired by 2 previously published papers'?
e Computed ATE estimates using 11 different methods
e On both datasets, methods disagree! At most one can be correct.

V. Veitch, D. Sridhar, and D.M. Blei. 2019. Using Text Embeddings for Causal Inference. arXiv:1905.12741
2M. De Choudhury, E. Kiciman, M. Dredze, G. Coppersmith, and M. Kumar. 2016. Discovering Shifts to Suicidal Ideation from Mental Health Content in Social
Media (CHI "16).



Statement How do we evaluate methods for
adjusting for confounding with text?




1. Why Causal Inference with Text?

a. Background & Recent Work
b. Common Representations, Models and Estimators

2. Framework for Evaluation

a. Five Challenges for Causal Inference with Text
b. Method for Generation of Semi-Synthetic Tasks




5 Challenges for Causal
Inference with Text

-

Generation
Framework

~

5 Tasks, Operationalizing
each Challenge




5 Challenges for Causal Inference with Text

Linguistic

« Complexity

| feel | am isolated
depressed from my peers




5 Challenges for Causal Inference with Text

2 Signal
 Intensity




5 Challenges for Causal Inference with Text

Strength of
Selection

° Effect




5 Challenges for Causal Inference with Text




5 Challenges for Causal Inference with Text

Placebo

e lest




5 Challenges

for Causal Inference with Text

Linguistic Complexity
Signal Intensity

Strength of Selection Effect
Sample Size

Placebo Test

17



Generation of Semi-Synthetic Tasks

e Counterfactuals are almost never known in real life,
o  Both synthetic and semi-synthetic datasets are used for evaluation

e Use semi-synthetic data to generate each task

o  Start with the same real-world text: Reddit user profiles
o Perturb the text to make a dataset with a known true ATE
o Can then empirically evaluate the bias of model

e Synthetic component enables evaluation, while real component preserves

realism
o Best of both worlds!

e For each challenge, generate tasks with levels of increasing difficulty
o Challenges form an “axis” along which we can vary the difficulty
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Generative Method

Simplified model of the world, with only two kinds of people:

e Class 1 (e.g. people who struggle with depression)
e Class 2 (e.g. people who don't)

This is an clear simplification

However, if methods fail here, unlikely they will do better in the real world

19



Generative Method

Visible to Methods

Real text with
perturbations

Real text with
perturbations

=

=
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Task 1: Linguistic Complexity

Level 1: Append the same synthetic post
Level 2: Append a random post mentioning sickness

Level 3: Append a random post mentioning sickness or isolation

Anoiyiq buisealou|

Level 4: Append a random post on sickness, social isolation, or death
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Task 2: Signal Intensity

Level 1:
Signal to Noise Ratio is infinitely high (10:0)

Level 2:
Signal to Noise Ratio is 3:1

Anoiyiq buisealou|
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Task 3: Strength of Selection Effect

Weak Selection Effect (easier):
.9/.1 split for class 1 to be treated, class 2 untreated

Anoiyiq buisealou|

Strong Selection Effect (harder):
.95/.05 split for class 1 to be treated, class 2 untreated
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Task 4. Sample Size

Level 1:
Train on all 3,200 users

Level 2:
Train on a random subset of 1,600 users

Anoiyiq buisealou|

Level 3:
Train on a random subset of 800 users
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Task 5: Placebo Test

ATE for class 1 set to +.9
ATE for class 2 setto-.9

As classes are balanced, overall ATE is 0
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What methods do we evaluate?

Text Representation Propensity Score Model ATE Estimator

e Unigrams (binary) e |Logistic Regression e IPTW (Hajek?)
e Bigrams (binary) e Simple Neural Net e Stratification

e Bigrams (counted) x (1 fully connected X e 1:1 Matching
e LDA features hidden layer)

SHERBERT, extending Causal BERT" to long text histories

V. Veitch, D. Sridhar, and D.M. Blei. 2019. Using Text Embeddings for Causal Inference. arXiv:1905.12741
"Hajek, J. 1970. A characterization of limiting distributions” of regular estimates. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete



Key Findings

Text representations and
propensity score models matter
more than ATE estimators.




Key Findings

Many models fail a placebo test -
this is greatly concerning!




Key Findings

Transformer-based representations
and models offer a promising path
for improvement.




Key Findings

However, transformer-based
models have limitations.

- Struggle with counting
- Require more data to be trained effectively.




Every model has room for improvement - more work is
needed

Our framework is not “complete” - no framework can be!

We contribute:

- the first evaluation framework in this space, consisting
consisting of 5 tasks

- an evaluation of 27 common methods

Hope to spark a continued conversation on how
best to evaluate causal inference methods for text.



Eli',..,..,

https://behavioral-data.github.io/CausallnferenceChallenges/

PAUL G. ALLEN SCHOOL @galenweld  gweld@cs.washington.edu

OF COMPUTER SCIENCE & ENGINEERING



Real World Experiments: Gender and Moderation

Gender Experiment’ Moderation Experiment?
n 90,000 posts n 13,786 user histories
Observation (O) | Posts from 3 subreddits in Observation (O) | Users’ post history from
2018 /r/science, 2015-2017
Treatment (7) Author’s flair is ‘male’ or Treatment (7) User has a post removed
‘female’ by a moderator in 2018
Outcome () Post'’s final score: Outcome () Number of posts a user
# upvotes - # downvotes makes in 2019
Features (X) The text of the post Features (X) Users’ post histories

V. Veitch, D. Sridhar, and D.M. Blei. 2019. Using Text Embeddings for Causal Inference. arXiv:1905.12741
2M. De Choudhury, E. Kiciman, M. Dredze, G. Coppersmith, and M. Kumar. 2016. Discovering Shifts to Suicidal Ideation from Mental Health Content in Social 34
Media (CHI '16).



Real World Experiments: Models

Compared 9 models for each experiment
2 commonly used models:

e Logistic Regression
e Simple Neural Network

3 kinds of features:

e Unigrams (binary)
e Bigrams (binary and counted)
e Latent Dirichlet allocation (LDA)

SHERBERT, our BERT-derived hierarchical model 35



Real World Experiments: Gender Results
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Real World Experiments: Gender Results
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Real World Experiments: Moderation Results
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Reddit Data

Buidwes wopuey
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Generative Method
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Generative Method
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SHERBERT Model

cauSal HiERarchical variant of BERT

Expands upon Causal BERT from Veitch, et. al,” with better scalability

42
*V. Veitch, D. Sridhar, and D.M. Blei. 2019. Using Text Embeddings for Causal Inference. arXiv:1905.12741



SHERBERT Model
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used in f and f, 1o insert into users’ histories




3 Types of Synthetic Posts

Sickness

o POStS
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3 Types of Synthetic Posts

Social Isolation

o POStS
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3 Types of Synthetic Posts

Death

o POStS
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Baselines: Theoretical Comparison Points

Unadjusted Estimator (lower bound)
Outputs propensity score estimate of .5 for every observation
Effectively does not adjust for confounding

Oracle (upper bound)
Outputs the true propensity score
Differs only from the theoretically optimal performance due to finite sample
effects

48



Results: Linguistic Complexity
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Results: Signal Intensity
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Results: Order of Text
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Results: Strength of Selection Effect
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Results: Number of Users
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Results: Absence of (Non-Zero) Treatment Effect
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